

2024

BRAZILIAN MEETING ON ORGANIC SYNTHESIS BENTO GONCALVES, RS - BRAZIL

Stereoselective Synthesis of N-Containing Heterocycles via Ir-Catalyzed Intramolecular α-Alkylation of Carbonyl Compounds

Romi S. Aggarwal^{1*}, Hassan Abbas¹, Changcheng Jing¹, Craig M. Robertson¹, John F. Bower¹ 1) Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, United Kingdom *e-mail: romi.aggarwal@liverpool.ac.uk

Keywords: Heterocycles, Stereoselective Catalysis, C-H activation.

ABSTRACT

Chiral nitrogenous heterocycles are prevalent in many biologically active molecules, with 59% of U.S. FDA approved small-molecule drugs possessing a nitrogen-containing heterocycle.¹ Many synthetic methodologies have been developed to access these scaffolds.² However, the asymmetric synthesis of highly substituted Ncontaining heterocycles from achiral, acyclic starting materials is still extremely limited.³ Here, we demonstrate an intramolecular iridium-catalyzed cyclization of α -amino amides onto unfunctionalized alkenes, installing adjacent stereocenters. This method utilizes the directing group ability of a glycine-derived N-H unit to facilitate Ir-catalyzed enolization of the carbonyl unit (1).⁴ The resulting stereodefined enolate undergoes branchselective C-C bond formation with complete regioselectivity. The process occurs with complete atom economy and excellent diastereo- and enantiocontrol (up to >20:1 d.r. and >99% e.r.), which is retained when accessing sterically challenging contiguous stereocenters. This method allows 6- and 7- membered N-containing heterocycles and 5- and 6- membered carbocycles to be constructed stereoselectively.

Funding Source: University of Liverpool; Crystal Structure: Craig M. Roberston

REFERENCES

1. Vitaku, E.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2014, 57 (24), 10257-10274. DOI: 10.1021/jm501100b

2. Groso, E. J.; Schindler, C. S. Synthesis 2019, 51 (5), 1100-1114. DOI: 10.1055/s-0037-1611651

- Zhang, Y. C.; Jiang, F.; Shi, F. Acc. Chem. Res. 2020, 53 (2), 425-446. DOI: 10.1021/acs.accounts.9b00549
 Hong F.; Aldhous T. P.; Kemmitt P. D.; Bower J. F. Nat. Chem. 2024, 16, 1125–1132. DOI: 10.1038/s41557-024-01473-5