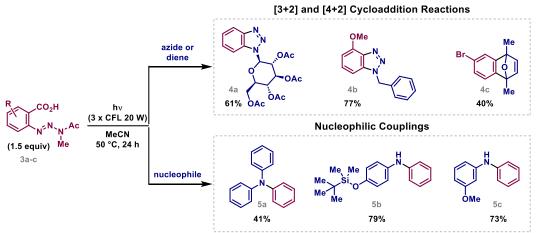


Photoprecursors of arynes in visible-light promoted cycloaddition and nucleophilic coupling reactions

Vinícius Vieira de Souza, Marcos Accioly Jr, and Cristiano Raminelli^{*}
Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo,
Diadema, São Paulo 09972-270, Brazil
*e-mail: raminelli@unifesp.br

Keywords: Benzyne chemistry, photochemical reactions, compact fluorescent light.


ABSTRACT

2-(3-Acetyl-3-methyl-1-triazen-1-yl)benzoic acids (**3a-c**) are understudied benzyne and aryne precursors, which are prepared from commercially available anthranilic acids (**1a-c**) in four reaction steps (**Scheme 1**).^{1,2}

1) NaNO₂ (1.03 equiv)

Scheme 1. Synthesis of compounds 3a-c.

After extensive optimization of the reaction conditions, compounds **3a-c** promoted the formation of arynes with white light, which were used in cycloaddition reactions to provide cycloadducts **4a-c** in yields of 40-77% and in nucleophilic couplings to give coupling products **5a-c** in yields of 41-79% (**Scheme 2**).

Scheme 2. Preparations of compounds 4a-c and 5a-c.

Twenty-two compounds were isolated in yields from 13% to 85% using aryne photoprecursors **3a-c**. It is noteworthy that this chemistry is compatible with functionalized groups containing sulfur, boron, and silicon. These groups are not tolerated under the conditions required to generate arynes via Kobayashi precursors.³ A mechanistic investigation using TEMPO and mass spectrometry suggests a radical mechanism for the photogeneration of arynes.

ACKNOWLEDGEMENTS

We thank the FAPESP and the CNPq for their financial support. V.V.S. thanks the CNPq and M.A.Jr thanks the CAPES for their scholarships.

REFERENCES

¹ Yuan, W. K.; Sun, S. Z.; Zhang, L. B.; Wen, L. R.; Li, M. Org. Chem. Front. 2019, 6, 2892.

² Khan, H.; Barman, D.; Sen, S. J. Org. Chem. 2024, 89, 6257.

³ Himeshima, Y.; Sonoda, T.; Kobayashi, H. Chem. Lett. 1983, 12, 1211.