

Synthesis of chalcones and *in vitro* and *in silico* evaluation for *Helicobacter pylori* and gastric adenocarcinoma cells

Romagna R A¹, Santos R B², Gonçalves, R C R¹, Kitagawa R R^{1*}

1) Department of Pharmaceutical Sciences, Federal University of Espírito Santo, UFES, 29047-105

2) Department of Chemistry, Federal University of Espírito Santo, UFES

*e-mail: rodrigo.kitagawa@ufes.br

Keywords: Claisen-Schmidt condensation, chalcones, Helicobacter pylori.

ABSTRACT

Helicobacter pylori is a gram-negative bacterium that colonizes the human stomach and is a major risk factor for the development of inflammatory gastrointestinal diseases, including cancer^{1,2}, which is why it is classified as group 1 carcinogen by World Health Organization³. NF-kB and MAPK pathways are triggered by *H. pylori* infection^{4–6}, specially cagA⁺ strains, and are usually overexpressed in cancer. The objective of this study was to synthesize 10 hydroxylated and methoxylated chalcones and evaluate their anti-*H. pylori* and gastric antitumor effects. The chalcones were synthesized through *Claisen-Schmidt*^{7,8} condensation within yields of 15-52%, then characterized by ¹H and ¹³C Nuclear Magnetic Resonance and Mass Spectrometry. Predictive *in silico* data revealed possibility of anti-*H. pylori*, anti-inflammatory and MMP-9 inhibition for the chalcones. Three of the ten chalcones (1, 6, 7) showed strong *H. pylori* growth inhibition results (MIC and MBC ranging from 1-2 µg/mL). Compound 7 also presented significant MMP-9 inhibition docking score and Cl₅₀ for AGS cells (32.25 \pm 5.43 µM). Then, these results reveal that compound 7 is promising as a possible drug for *H. pylori* treatment, that may act synergically reducing the inflammatory response and the possibilities for developing gastric tumor.

Compound	R1	R ²	R ³	R ⁴	R⁵	R ⁶	R ⁷	MIC (μg/mL)	MBC (µg/mL)	L929 IC ₅₀ (µM)	AGS IC ₅₀ (μM)	SI	S (kcal mol ⁻¹)	
1	-OH	-H	-OH	-H	-H	-OMe	-H	1	2	177.30 ± 6.81 ****	48.21 ± 1.04	3.60 **	-7,26	R ³ O R ⁴
2	-OMe	-H	-OH	-OMe	-H	-H	-H	4	8	352.05 ± 7.46 ****	55.92 ± 12.84	6.30 ****	-7,37	\mathbb{R}^2
3	-OMe	-H	-OH	-H	-H	-OMe	-H	2	4	92.19 ± 16.21 ****	108.58 ± 16.36 ****	0.85	-7,63	"\\\\\
4	-OMe	-H	-OH	-OMe	-H	-OMe	-H	2	4	135.81 ± 9.35 ****	186.39 ± 14.70 ****	0.73	-7,75	
5	-OMe	-H	-OH	-OMe	-H	-H	-Br	4	8	233.58 ± 28.69 ****	32.49 ± 0.36	7.19 ****	-7,82	R1 🗸
6	-OMe	-H	-OH	-CI	-H	-H	-H	2	2	100.34 ± 10.15 ***	53.89 ± 3.88	1.86	-7,03	R'
7	-OMe	-OMe	-OMe	-H	-H	-H	-H	2	2	84.03 ± 1.01 ***	32.25 ± 5.43	2.61	-7,91	1-7
8	-H	-	-	-	-	-	-	4	8	95.55 ± 0.36 ***	25.34 ± 0.47	3.77 **	-7,31	
9	-OMe	-	-	-	-	-	-	8	16	43.18 ± 9.46	135.74 ± 12.35 ****	0.32	-7,31	ÓH Ö
10	-CI	-	-	-	-	-	-	8	8	303.67 ± 9.36 ****	28.70 ± 14.22	10.58 ****	-7,40	
amoxicilin	-	-	-	-	-	-	-	0.0625	0.125	-	-	-	-	
cisplatin	-	-	-	-	-	-	-	-	-	24.05 ± 6.04	39.59 ± 0.66	0.61	-	
	_		_				_	_	_	_		-	-6,00	

ACKNOWLEDGEMENTS

This study was funded by FAPES (MZP5B), CAPES (2144/2022) and CNPq (314276/2021-1)

REFERENCES

- (1) Mladenova, I. Clinical Relevance of Helicobacter pylori Infection. J Clin Med 2021, 10 (3473). https://doi.org/10.3390/jcm10163473.
- (2) Testerman, T. L.; Morris, J. Beyond the Stomach: An Updated View of Helicobacter Pylori Pathogenesis, Diagnosis, and Treatment. World J Gastroenterol 2014, 20 (36), 12781–12808. https://doi.org/10.3748/wjg.v20.i36.12781.
- (3) International Agency for Research on Cancer.; World Health Organization. Schistosomes, Liver Flukes and Helicobacter Pylori.; IARC, 1994.
- (4) H. Kim, J. W. Lim, K. H. K. Helicobacter Pylori -Induced Expression of Interleukin-8 and Cyclooxygenase-2 in AGS Gastric Epithelial Cells: Mediation by Nuclear Factor-KB. Scand J Gastroenterol 2001, 36 (7), 706–716. https://doi.org/10.1080/00365520119046.
- (5) Karayiannis, İ.; Martinez-Gonzalez, B.; Kontizas, E.; Kokkota, A. V.; Petraki, K.; Mentis, A.; Kollia, P.; Sgouras, D. N. Induction of MMP-3 and MMP-9 Expression during Helicobacter Pylori Infection via MAPK Signaling Pathways. *Helicobacter* **2023**, *28* (4). https://doi.org/10.1111/hel.12987.
- (6) Pan, G.; Wang, X.; Wang, Y.; Li, R.; Li, G.; He, Y.; Liu, S.; Luo, Y.; Wang, L.; Lei, Z. Helicobacter Pylori Promotes Gastric Cancer Progression by Upregulating Semaphorin 5A Expression via ERK/MMP9 Signaling. *Mol Ther Oncolytics* **2021**, *22*, 256–264. https://doi.org/10.1016/j.omto.2021.06.002.
- (7) Bhagat, S.; Sharma, R.; Sawant, D. M.; Sharma, L.; Chakraborti, A. K. LiOH·H2O as a Novel Dual Activation Catalyst for Highly Efficient and Easy Synthesis of 1,3-Diaryl-2-Propenones by Claisen-Schmidt Condensation under Mild Conditions. *J Mol Catal A Chem* **2006**, *244* (1–2), 20–24. https://doi.org/10.1016/j.molcata.2005.08.039.
- (8) Alcantara, A.; Marinas, J. M.; Sinisterra, J. V. Ba(OH)2 AS CATALYST IN ORGANIC REACTIONS. VIII. NATURE OF THE ADSORBED SPECIES IN CLAISEN-SCHMIDT REACTION. *React. Kinet. Catal. Lett.* **1986**, *32* (2), 377–385.