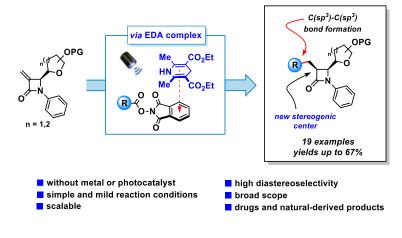


BRAZILIAN MEETING ON ORGANIC SYNTHESIS BENTO GONÇALVES, RS - BRAZIL

Expanding the Chemical Space of Electrophilic β-Glycosyl β-Lactams through Photoinduced Diastereoselective Functionalization


Lucas L. Baldassari^{1,2*}, Éverton A. Tordato², Renan O. Gonçalves², Claudio A. Jiménez³, Diogo S. Lüdtke¹ and Márcio W. Paixão²

Department of Chemistry, Federal University of Rio Grande do Sul, UFRGS, 91501-970
Department of Chemistry, Federal University of São Carlos, UFSCar, 13565-905
Department of Organic Chemistry, Universidad de Concepción, 4130000
*e-mail: lucas-loss@hotmail.com

Keywords: EDA complex, β-Glycosyl β-Lactams, high diastereoselectivity synthesis.

ABSTRACT

A photoinduced diastereoselective C-3 functionalization of electrophilic β -glycosyl β -lactams is presented. The developed protocol is simple, mild and explores the use of 3-exomethylene β -lactams, which are still unexplored under photochemical conditions, as reaction partners in a Giese type reaction. The key nucleophilic alkyl radical is generated by a photoinduced electron transfer process in the *EDA* complex formed by NHPI and Hantzsch esters. The diastereoselective hydrogen atom transfer to the β -lactam radical intermediate enables the synthesis of various *N*-phenyl β -glycosyl β -lactams. This strategy features excellent functional group tolerance, scalability, and high diastereoselectivity and offers an alternative way to functionalize position C-3 in the β -lactams core, wich is increasingly recognized as crucial given its direct correlation with the biological efficacy of these compounds.¹

ACKNOWLEDGEMENTS

We are grateful to CAPES, CNPq, INCT Catálise, FAPESP and FAPERGS.

REFERENCES

 Tordato, E. A.; Gonçalves, R. O.; Baldassari, L. L.; Jiménez, C. A.; Lüdtke, D. S.; Paixão, M. W. Expanding the Chemical Space of Electrophilic β-Glycosyl β-Lactams through Photoinduced Diastereoselective Functionalization. Org. Lett., 2024, 26, 5500-5505.