

SEPTEMBER 23-27[™]

2024

BRAZILIAN MEETING ON ORGANIC SYNTHESIS BENTO GONÇALVES, RS - BRAZIL

Multisite-Sequential Cyclization to Construct 1,2,3-Triazole-Based Se,N-Fused Heterocyclics

Wystan K. O. Teixeira, Victor H. B. Pastorello, Márcio W. Paixão and Ricardo S. Schwab* Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Departamento de Química, Universidade Federal de São Carlos – UFSCar, Rodovia Washington Luís, km 235 - SP-310, São Carlos, São Paulo 13565-905, Brazil *e-mail: rschwab@ufscar.br

Keywords: 1,2,3-triazoles, cascade reaction, organocatalysis, organoselenium.

ABSTRACT

The construction of complex polyheterocyclic molecules, such as pharmaceuticals, polymers, agrochemicals and dyes, which are integrated into everyday life, has been in the spotlight of organic synthesis.^[1] Cascade reactions offer an ideal and efficient approach to constructing such compounds, building molecular complexity in a single transformation.^[2] In particular, 1,2,3-triazoles fused with heterocycles at the 1,5-positions represent a ubiquitous type of core substructure that has attracted enormous interest since they have been frequently found in synthetic molecules, biologically active substances, and pharmaceutical targets. Among the established strategies,^[3] the interrupted version of copper(I)-catalyzed azide–alkyne cycloaddition (CuAAC) stands out as one of the most direct and straightforward synthetic approaches for accessing 1,2,3-triazoles fused at the 1,5-positions with different heterocyclic moieties. In the last few decades, organocatalysis has emerged as a powerful tool for synthesizing diversely functionalized 1,2,3-triazoles that are inaccessible by other means.^[4] Based on our continuing interests in developing elegant approaches for constructing 1,2,3-triazoles and on the organoselenium compounds chemistry, we reported here a novel method for constructing selenium-cycle-fused 1,2,3-triazoles by combining the organocatalyzed (3+2)-cycloaddition of aldehydes with 1,2-bis(2-azidoaryl)diselenides followed by an intramolecular cyclization reaction (Scheme 1).

Scheme 1.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge (FAPESP, grants 2013/06558-3 and 2021/12394-0), (CAPES, Finance Code 001), and (CNPq grant 475203/2013-5) for financial support and fellowships.

REFERENCES

^{1 -} a) Taylor, R. D.; MacCoss, M.; Lawson, A. D. *J. Med. Chem.* 2014, *57*, 5845-5859. b) Liu, C.; Wang, K.; Gong, X.; Heeger, A. J. *Chem. Soc. Rev.* 2016, *45*, 4825-4846.

^{2 -} a) Lu, L.-Q.; Chen, J.-R.; Xiao, W.-J. Acc. Chem. Res. 2012, 45, 1278-1293. b) Jiang, Y.; McNamee, R. E.; Smith, P. J.; Sozanschi, A.; Tong, Z.; Anderson, E. A. Chem. Soc. Rev. 2021, 50, 58-71.

^{3 -} a) Jadhav, A. S.; Pankhade, Y. A.; Anand, R. V. *J. Org. Chem.* **2018**, *83*, 8596-8606. b) Geng, Z.-Q.; Zhao, C.; Qian, H.-D.; Li, S.-J.;Li, Peng, H.; Xu, H *Org. Lett.* **2023**, *25*, 4504-4509. c) Jaiswal, M. K.; Tiwari, Vi. K. *Chem. Rec.* **2023**, e202300167. d) Teixeira, W. K. O.; de Albuquerque, D. Y.; Zukerman-Schpector, J.; Seckler, D.; Rampon, D. S.; Schwab, R. S. *J. Org. Chem.* **2023**, *88*, 10434-10447. 4 - Opsomer, T.; Dehaen, W. *Chem. Commun.* **2021**, *57*, 1568-1590.