

BRAZILIAN MEETING ON ORGANIC SYNTHESIS BENTO GONCALVES, RS - BRAZIL

Orange Peel Ashes as Catalyst for Glycerol Carbonate Synthesis

Laura Abenante^{1*}, Vinicius Bertoncello Molon¹, Taís Menta de Col¹, Manuela Pires Onzi¹, Priscila Milani² and Thiago Barcellos¹ 1) University of Caxias do Sul, Caxias do Sul, RS, 95070-560, Brazil. 2) Cargill Agricola S.A., São Paulo, SP, 04711-130, Brazil. *e-mail: labenante@ucs.br

Keywords: glycerol, biomass, catalysis.

ABSTRACT

Glycerol carbonate (GC) is a versatile glycerol derivative¹ used as solvent, an ingredient in surface cleaners, dyes, plastics, cosmetic formulations, and an intermediate in polymer syntheses.² The transesterification reaction of dimethyl carbonate with glycerol catalyzed by basic metallic oxides is generally the most affordable approach to preparing GC. Biomass ashes are a rich source of alkaline metallic oxides,⁴ thus a potential catalyst for GC synthesis. In this context, Brazil is the largest orange producer in the world,³ resulting in large amounts of residual orange peels. Herein, we present a synthetic protocol using K₂O and CaO-rich orange peel ashes obtained after essential oil extraction, calcination at 650 °C, for 5 h, and designated as Orange Peel Ashes Without Oil (OPAWO). A Design of Experiments (DoE) with three-level and four-factor was employed to identify the optimal reaction conditions, which were determined to be a 1:3.5 ratio of glycerol and dimethyl carbonate, 4 wt% of catalyst at 95°C for 135 minutes. Under these conditions, GC was prepared with 85 % isolated yield.

Scheme 1. Synthesis of Glycerol Carbonate using Orange Peel Ashes Without Oil as catalyst.

ACKNOWLEDGEMENTS

CNPq, Cargill Agricola S.A.

REFERENCES

(1) Y. Zheng, X. Chen, Y. Shen, in Chem. Rev. 2008, 108, 5253-5277.

(2). S. Christy, A. Noschese, M. Lomelí-Rodriguez, N. Greeves, J. A. Lopez-Sanchez, in Curr. Opin. Green Sustain. Chem. 2018, 14, 99–107.

(3). R. M. Dos Santos, I. De Alencar Nääs, M. Mollo Neto, O. Vendrametto, in Rev. Bras. Frutic. 2013, 35, 218-255.

(4). a) U. Michael-Igolima, S. J. Abbey, A. O. Ifelebuegu, E. O. Eyo, in *Materials* **2023**, *16*, 1092. b) M.-H. Abd-Alla, F. A. Gabra, A. W. Danial, A. M. Abdel-Wahab, in *Int. J. Energy Res.* **2019**, *43*, 391-404.