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ABSTRACT 

Nitrogenated heterocycles comprise the cores of several synthetically useful compounds, including 
pharmaceuticals, bioactive natural products, agrochemicals, and other drug-like molecules1–4. Currently, 84% 
of structurally unique and approved drugs contain at least one nitrogen atom, being 59% of then nitrogen-
bearing heterocycles. The widespread interest in methods to increase the fraction of sp3 carbon atoms (Fsp3)5 
of drug-like scaffolds in a stereocontrolled manner, while enabling explorations of unusual amine chemical 
space, inspired our efforts to tune the reactivity of aziridinium ylides. A sequential nitrene–carbene transfer of 
simple allenes leads to divergent product outcomes depending on the nature of the carbene precursor, 
furnishing products of different ring sizes. Both products, four-membered heterocyclic azetidines, and the six-
membered dehydropiperidine, are scaffolds of interest in medicinal chemistry4. In addition, the catalyst control 
over the ring size via proposed hydrogen-bonding interactions between the catalyst and substrate was 
explored. Computational studies were employed to gain insight into the major features of substrates and 
catalysts that influence the tunable reactivity of aziridinium ylide intermediates formed in this chemistry.  
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