

BRAZILIAN MEETING
ON ORGANIC SYNTHESIS

BENTO GONÇALVES, RS - BRAZIL

Electrosynthesis of Benzothiazole Derivatives Using Sacrificial Electrodes

<u>Laís Aparecida Piaz</u>¹, Guilherme Machado Martins², Samuel Rodrigues Mendes^{1*}

1) Department of Chemistry, Santa Catarina State University, UDESC, 88035-901.
2) Department of Chemistry, Federal University of Sao Carlos (UFSCar), 13565-905.

*e-mail: samuel.mendes@udesc.br

Keywords: Benzothiazole, Electrosynthesis, Sacrificial Electrodes.

ABSTRACT

Benzothiazole derivatives have demonstrated remarkable biological activities, including anticancer, antimicrobial, and neuroprotective properties¹. Electrosynthesis has proven to be an environmentally friendly and efficient approach for the chalcogenation of organic molecules². This project aims to develop an electrochemical methodology for the synthesis of benzothiazole derivatives (Scheme 1).

Scheme 1. Synthesis of Benzothiazole Derivatives using sacrificial electrodes.

$$\begin{array}{c|c} S \\ N \end{array} + \begin{array}{c} S \\ Se \end{array} \\ \begin{array}{c} S \\ Se \end{array} \\ \begin{array}{c} Pt Cu \\ 20mA \\ \frac{K_2CO_3, KI}{DMF, 110 \ ^{\circ}C, \ 2h} \end{array} \end{array} \\ \begin{array}{c} S \\ N \end{array} \\ \begin{array}{c} S \\ \end{array}$$

Previous results indicated conversion yields ranging from 3% to 81%, as determined by NMR analysis. Reaction conditions were optimized (Table 1).

Table 1. Optimization of Reaction Conditions.

Entry	Solvent	Base (mmol)	Catalyst	Electrode	T (°C)	t (h)	Yield (%)ª
1	ACN	-	-	Pt:Pt	r.t	12	-
2	DMF	-	-	Pt:Pt	120	2	-
3	DMF	K ₂ CO ₃ (0.75)	-	Pt:Cu	60	2	3%
4	DMF	K ₂ CO ₃ (0.75)	-	Pt:Cu	120	2	41%
5	DMF	K ₂ CO ₃ (0.75)	-	Pt:Cu	110	2	81% ^b

^aConversion by H NMR. ^bReaction conditions: The base was added on the reaction when the temperature system was around 65°C.

ACKNOWLEDGEMENTS

CMU/UDESC, FAPESC, CAPES.

REFERENCES

- (1) Rafique, J.; Saba, S.; Tiago; Braga, A. L. Fe3O4 Nanoparticles: A Robust and Magnetically Recoverable Catalyst for Direct C-H Bond Selenylation and Sulfenylation of Benzothiazoles. ChemistrySelect 2018, 3 (1), 328–334. https://doi.org/10.1002/slct.201702623.
- (2) Martins, G. M., Meirinho, A. G.; Ahmed, N.; Braga, A. L.; Mendes, S. R. Recent Advances in Electrochemical Chalcogen (S/Se)-Functionalization of Organic Molecules. ChemElectroChem 2019, 6 (24), 5928–5940. https://doi.org/10.1002/celc.201901525.