

Silver-Catalyzed Intramolecular Cyclization of Guanidine Motifs onto Alkynes

Roberto do Carmo Pinheiro^{1*} and Igor Jurberg¹
1) Institute of Chemistry, State University of Campinas, UNICAMP, 13083-970
*e-mail: docarmo.roberto@gmail.com

Keywords: Catalysis, Intramolecular Cyclization, Guanidine Derivatives.

ABSTRACT

Organic compounds containing guanidine groups in their structures have received significant attention from the scientific community, possibly most likely due to their numerous potential biological applications.¹ In this regard, we became interested in developing an intramolecular cyclization strategy promoted by a metal catalyst aiming at the preparation of polycyclic guanidine derivatives,² and a silver salt was found to be a convenient choice as a promoter of this transformation.

$$R^2O_2C$$
 NH
 R^3
 R^3
 R^2O_2C
 R^3
 R^3
 R^4
 N
 NH_2

Studies involving the scope of this transformation, key aspects of reaction mechanism and potential biological activities of these compounds are being currently investigated.

ACKNOWLEDGEMENTS

We are grateful to Fapesp for a post-doctoral Fellowship (2022/13198-2) to RdCP and a Thematic Research grant (2019/17721-9) having IDJ as one of the main PIs.

REFERENCES

¹ (a) Berlinck, R. G. S.; Trindade Silva, A. E.; Santos, M. F. C.; *Nat. Prod. Rep.* **2012**, *29*, 1382. (b) Liu, J.; Li, X.-W.; Guo, Y.-W. Mar. Drugs **2017**, *15*, 324. (c) Santos, M. F. C., Harper, P. M., Williams, D. E., Mesquita, J. T., Pinto, E. G., Costa-Silva, T. A., Hajdu, E., Ferreira, A. G., Santos, R. A., Murphy, P. J., Andersen, R. J., Tempone, A. G, Berlinck, R. G. S., *J. Nat. Prod.* **2015**, *78*, 1101. (d) Silva, S. B. L.; Oberhänsli, F.; Tribalat, M.-A.; Genta-Jouve, G.; Teyssié, J.-L; Dechraoui-Bottein, M.-Y.; Gallard, J.-F.; Evanno, L. *Angew. Chem. Int. Ed.* **2019**, *58*, 520.

²(a) Hutchinson, L., Wilger, D. *Adv. Synth. Catal.* **2022**, *364*, 3441. (b) Das, S., Roy, S., Chattopadhyay, B. *Angew. Chem. Int. Ed.* **2023**, *62*, e202210912.