

## Synthesis of the Pheromone of *Duponchelia fovealis* Zeller, 1847 (Lepidoptera, Crambidae) for Pest Control in Strawberry Crops

João Pedro de Albuquerque Souza,<sup>1</sup> Alice Dobrychtop Correa,<sup>1\*</sup> Madalena Afonso Ferreira,<sup>2</sup> Maria Aparecida Cassilha Zawadneak<sup>2</sup> and, Paulo Henrique Gorgatti Zarbin<sup>1\*</sup> 1) Laboratório de Semioquímicos, Federal University of Paraná, UFPR

2) Laboratório de Entomologia Agrícola Professor A. M. Costa Lima, Federal University of Paraná, UFPR \*e-mail: <u>alicecorrea@ufpr.br</u>, <u>pzarbin@ufpr.br</u>

Keywords: Alkene synthesis, C≡C stereoselective reduction, Pest management, Semiochemicals.

## ABSTRACT

Strawberry (*Fragaria × ananassa*) production has increased in Brazil, but the *Duponchelia fovealis* has been a key pest of the crop, causing losses in yield and even plant death. Mouár et. al. (2018) identified the pheromone used by this pest females as the aldehydes: (*E*)-octadec-13-enal (1), (*Z*)-octadec-13-enal (2), and (*Z*)-hexadec-11-enal (3) in a 10:1:0.1 ratio. In this context, our objective was to synthesize pheromones 1-3 for application in pest control. In the synthesis shown below, a substitution reaction with alkynyl anion was a key step leading to a triple bond intermediate. This compound can be stereoselectively reduced to the *E* isomer in the synthesis of compound 1 and to the *Z* isomer for the synthesis of compound 2. Pheromone component 3 was synthesized in a similar way. The compounds were used in field tests and around thirteen males were collected in traps for 28 days.



Reagents and conditions: (a) HBr, toluene, reflux (*Dean Stark*), 10h; (b) TEMPO, NaOCI, KBr, CH<sub>2</sub>Cl<sub>2</sub>, buffer pH 8,6, 0 °C, 1 h; (c) Ethylene Glycol, toluene, reflux (*Dean Stark*), 4h; (d) KI, acetone, reflux, 4h; (e) 3-((trimethylsilyl)oxy)prop-1yn-1-yl lithium, TMEDA, THF, reflux, overnight; (f) TBAF, THF, r.t., 2h; (g) LiAlH<sub>4</sub>, diglyme, reflux, overnight; (h) l<sub>2</sub>, PPh<sub>3</sub>, imidazole, CH<sub>2</sub>Cl<sub>2</sub>, r.t., 4 h; (i) MeOH/H<sub>2</sub>O, *p*TSA, r.t., 2h; (j) H<sub>2</sub> (5 psi), Pd/C, quinoline, hexane, 2h.

## ACKNOWLEDGEMENTS

We are thankful to the funding sources, CAPES, CNPq, PRPPG – UFPR and INCT - Semioquímicos na Agricultura

## REFERENCES

Molnár, P. B.; Bognár, C.; Erdei, A. L.; Fujii, T.; Vági, P.; Jósvai, J. K.; Kárpáti, Z. J Chem Ecol 2018, 44 (3), 257–267.