

BRAZILIAN MEETING ON ORGANIC SYNTHESIS BENTO GONÇALVES, RS - BRAZIL

Reactivity study of isopiperitenol and *p*-mentha-2,8-dien-1-ol for the synthesis of cannabidiol and cannabidiolic acid methyl esther

Marcos Accioly Jr,¹ Felipe L. N. da Silva,² Rodrigo O. M. A. de Souza,^{2*} and Cristiano Raminelli^{1*} 1) Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Brazil 2) Instituto de Química, Universidade Federal do Rio de Janeiro, Brazil *e-mail: rodrigosouza@iq.ufrj.br; raminelli@unifesp.br

Keywords: Phytocannabinoids, Friedel-Crafts reaction, batch and flow systems.

ABSTRACT

Cannabidiol (1) is a phytocannabinoid with notorious pharmaceutical applications associated with its antiepileptic,¹ anxiolytic-like,² and chemoprotective properties.³ Hence, synthetic approaches targeting cannabidiol and other cannabinoids are encouraged. We highlight the Eschenmoser approach, which is based on a Friedel-Crafts reaction between an allylic alcohol, such as isopiperitenol (2) or *p*-mentha-2,8-dien-1-ol (3), and an olivetolic compound (4 or 5) in the presence of a Lewis acid.⁴ However, the difference in reactivity between alcohols 2 and 3 has never been investigated since the establishment of this strategy. Therefore, this study compares the reactivity of allylic alcohols 2 and 3 with compounds 4 and 5, using AgOTf and BF₃-OEt₂ as Lewis acids, affording cannabidiol (1) or cannabidiolic acid methyl esther (6) in batch and flow systems. Reactions were monitored by HPLC-PDA. Our data showed that isopiperitenol (2) has higher reactivity than *p*-mentha-2,8-dien-1-ol (3). DFT calculations are being performed to complement the data obtained.

ACKNOWLEDGEMENTS

We are grateful to FAPESP and CNPq for the financial support. M.A.Jr thanks CAPES and F.L.N.S. thanks CNPq for their scholarships.

REFERENCES

- 1. Chen, J. W., Borgelt, L. M., Blackmer, A. B. Ann. Pharmacother. 2019, 53, 603–611.
- Shu, G.; He, Y.; Wu, C.; Gong, X.; Xiang, Y.; Yang, W.; Cheng, J.; Wang, Y.; Chen, W.; Shen, J. *Neurosci. Lett.* 2024, *826*, 137723.
 Aviello, G.; Romano, B.; Borrelli, F.; Capasso, R.; Gallo, L.; Piscitelli, F.; Di Marzo, V.; Izzo, A. A. *J. Mol. Med.* 2012, *90*, 925–934.
 Petrzilka, T.; Haefliger, W.; Sikemeier, C.; Ohloff, G.; Eschemmoser, A. *Helv. Chim. Acta* 1967, *50*, 719–723.