BRAZILIAN MEETING

SEPTEMBER p
23-27" BM( ON ORGANIC SYNTHESIS
2024 BENTO GONGCALVES, RS - BRAZIL

New Aromatics from a Chitin-based Nitrogenated Furanic Platform

Bruna B. de Souzal, Renan R. Mattioli', Camila S. Santos?, Pedro D. Branco?!, Robert R. A. Bolt?, Sarah E.
Raby-Buck?, Tadeu L. G. Cabral*, Claudio F. Tormena?, Duncan L. Browne?, Julio C. Pastre!"
1) Institute of Chemistry, State University of Campinas (UNICAMP), 13083-970, Campinas, SP, Brazil
2) School of Pharmacy, University College London (UCL), WC1N 1AX, London, UK
*e-mail: jpastre@unicamp.br

Keywords: Chitin Biomass, Mechanochemistry, Green Chemistry.
ABSTRACT

Chitin biomass is a rich renewable resource that widely exists in crustacean shells and arthropod exoskeleton,
being the second most abundant natural polysaccharide after cellulose. Recently, the use of furans derived
from chitin has become a promising source for nitrogen fixation in high added-value compounds. In this
context, we explored the mechanochemical synthesis of aromatic compounds from renewable sources, in
agreement with many of the principles of Green Chemistry. Herein, we address the challenge of using the
chitin-derived furan 3-acetamido-5-furfural aldehyde (3A5F) to favour the formation of 4-
acetylaminophthalimides, using the hydrazone approach. Theorical calculations confirmed that hydrazone
(1) is more reactive than 3A5F in the Diels-Alder reaction with maleimide as dienophile. Under optimized
conditions, Diels-Alder reaction followed by spontaneous aromatization afforded 4-acetylaminophthalimides
in up to 79% vyield. Further derivatizations were also performed to showcase the synthetic potential of the
new aromatics prepared.
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