TEXTURA E OVERRUN DE SHERBET ADOÇADO COM MEL

P.A. dos Santos¹, L.G.C. Garcia², K.S. Silva³, F.A. da Silva⁴, P.P. de Almeida⁵, E.S. Nicolau⁶

- 1- Departamento de Engenharia de Alimentos Instituto Federal de Educação, Ciência e Tecnologia Goiano Campus Rio Verde CEP: 75901-970 Rio Verde GO Brasil, Telefone: +55 (64) 99986-6234 e-mail: priscila.santos@ifgoiano.edu.br.
- 2- Departamento de Engenharia de Alimentos Instituto Federal de Educação, Ciência e Tecnologia Goiano Campus Rio Verde CEP: 75901-970 Rio Verde GO Brasil, Telefone: +55 (64) 98148-0475 e-mail: lismairagarcia@hotmail.com.
- 3 Departamento de Engenharia e Tecnologia Universidade Estadual Paulista "Júlio de Mesquita Filho" Campus São José do Rio Preto CEP: 15054-000 São José do Rio Preto SP Brasil, Telefone: +55 (17) 99101-4601 e-mail: kamillasoares.eng@gmail.com
- 4 Departamento de Engenharia de Alimentos Universidade Federal de Goiás, Escola de Agronomia CEP: 74.690-900 Goiânia GO Brasil, Telefone: +55 (62) 99656-6022 e-mail: flaviocamp@gmail.com.
- 5 Departamento de Ciência e Tecnologia de Alimentos Instituto Federal de Educação, Ciência e Tecnologia Goiano Campus Urutaí CEP: 75790-000 Urutaí GO Brasil, Telefone: +55 (62) 98105-4550 e-mail: priscilla.almeida@ifgoiano.edu.br.
- 6- Departamento de Medicina Veterinária Universidade Federal de Goiás, Escola de Veterinária e Zootecnia CEP: 74.690-900 Goiânia GO Brasil, Telefone: +55 (62) 999941-0955 e-mail: rena@cpa.evz.ufg.br.

RESUMO – A textura do *sherbet* adoçado com mel foi avaliada segundo o método de TPA (Texture Profile Analysis), utilizando texturômetro, enquanto que o *overrun* foi calculado por meio de equação. O *sherbet* apresentou uma textura de 57,79 N e *overrun* de 77,46%. Pode-se concluir que a substituição da sacarose pelo mel como adoçante do *sherbet* resultou em um produto com maior dureza, no entanto o ar incorporado durante o batimento resultou em um produto leve e macio.

ABSTRACT – The texture of the honey-sweetened sherbet was evaluated using the TPA (Texture Profile Analysis) method, using a texturometer, while the overrun was calculated using an equation. The sherbet had a texture of 57.79 N and an overrun of 77.46%. It can be concluded that the substitution of sucrose for honey as a sweetener for sherbet resulted in a product with greater hardness, however the air incorporated during the beating resulted in a light and soft product.

PALAVRAS-CHAVE: incorporação de ar, dureza, gelado comestível.

KEYWORDS: incorporation of air, hardness, edible ice cream.

1. INTRODUÇÃO

A Portaria da Nº 379 de 1999 da Agência Nacional de Vigilância Sanitária (ANVISA), classifica os gelados comestíveis em diferentes produtos, e dentre essa classificação tem-se os *sherbets*, que são os produtos elaborados basicamente com leite e ou derivados lácteos e/ou outras matérias-primas alimentares e que contêm uma pequena porção de proteína e gordura, as quais podem ser total ou parcialmente de origem não láctea, contendo no mínimo 1% de gordura e 1% de proteína (Brasil, 1999).

Conhecer as características texturais dos diferentes produtos é fundamental para a melhoria contínua da qualidade. O objetivo final da indústria de alimentos é conhecer as necessidades dos consumidores e atender sua satisfação por meio de sua percepção positiva acerca de um produto (Ramos, 2016). Um dos principais testes para estudar o comportamento mecânico de alimentos é a Análise do Perfil de Textura (*Texture Profile Analysis* – TPA) (Souza, 2011).

A textura do sorvete depende de fatores como: estrutura, composição, estado de agregação dos glóbulos de gordura, da quantidade de ar incorporado (*overrun*), do tamanho e da quantidade dos cristais de gelo formados (Ramos, 2016). Sendo assim, torna-se importante também o estudo do *overrun*. De acordo com Fellows (2006) ar incorporado na emulsão durante o congelamento aumenta a maciez e leveza do produto permitindo que seja mais facilmente servido. A quantidade de ar incorporada em sorvetes comerciais é de 60 a 100%, estes tem uma textura mais cremosa do que os feitos em casa, devido ao congelamento mais rápido, produzindo cristais de gelo menores, e também aos emulsificantes e estabilizantes que fazem com que uma grande fase aquosa permaneça sem congelar, evitando a cristalização de açúcares, reduzindo a arenosidade.

Diante do exposto, objetivou-se com o presente estudo desenvolver e avaliar a textura e o *overrun* de *sherbet* adoçado com mel.

2. MATERIAL E MÉTODOS

2.1. ELABORAÇÃO DO SHERBET

Para a produção do *sherbet* utilizou-se leite UHT semidesnatado zero lactose Piracanjuba[®], mel de abelhas da florada de cipó-uva (apiário Sabor de Mel), base para sorvete sabor creme Pro Sorvete[®], emulsificante (Biomix[®]) e mistura neutra de liga neutra Selecta[®] (açúcar e amido).

Todos os ingredientes foram inicialmente homogeneizados em liquidificador industrial (Siemsen, D560484, Jaraguá do Sul, Brasil), durante 1 min, formando uma calda. Logo após, esta foi colocada em uma masseira para sorvetes (Everest, Tipo horizontal, São Carlos, Brasil) para incorporação de ar, na temperatura de -7°C durante 4 min. Em seguida os *sherbets* experimentais foram acondicionados em embalagens de 10L de polietileno de alta densidade (HDPE) com tampa e armazenados a -18 ° C.

2.2. ANÁLISE DE TEXTURA

A análise de textura foi realizada segundo o método de TPA (Texture Profile Analysis), utilizando texturômetro (Texture Analyser, TA-XT Plus, Surrey, Inglaterra), com 10 corridas. As amostras de *sherbet* adoçado com mel foram colocadas em recipientes de PEAD com diâmetro de 50mm e altura de 25mm, e levadas ao freezer a temperatura de -18°C, até o momento das análises. Foram empregados parâmetros iguais aos utilizados por Aime et al. (2000), sendo de probe cilíndrico com 20mm de diâmetro (P/20), *tiger force* de 5g, velocidade de pré-teste, teste e pós-teste de 2 mm s⁻¹, e distância de penetração de 15 mm, sob temperatura de 25°C. O atributo do TPA de dureza (N) foi registrado e analisado com o auxílio do software (Texture Exponent Lite, Versão 4.0.13.0, Surrey, Inglaterra) acoplado ao equipamento.

2.3 OVERRUN

Para determinação do overrun foi utilizada a equação descrita por Soler e Veiga (2001), conforme a Equação 1:

$$\% \ \textit{Overrun} = \frac{\text{Volume do sorvete(mL) - Volume do mix(mL)}}{\text{Volume do mix(mL)}} \ x \ 100 \qquad (Equação \ 1)$$

3. RESULTADOS E DISCUSSÃO

Analisando a Tabela 1, tem-se os valores obtidos de textura e *overrun* do sherbet adoçado com mel. Ramos (2016) elaborou sorvete com e sem lactose e obteve valores de textura de 28,13 N e 34,25 N, respectivamente, sendo estes valores inferiores ao obtido no *sherbet* adoçado com mel.

De acordo com Clarke (2004) e Goff (2010) os açúcares influenciam a textura de sorvetes, pois afetam a viscosidade da matriz, pois quanto mais alto o peso molecular do açúcar, maior a viscosidade da matriz, e matrizes de alta viscosidade tendem a produzir sorvetes que fornecem a sensação de gelado agradável na boca, porém produzem sorvetes mais duros e difíceis de manusear. O que justifica o valor de textura mais elevado do *sherbet* do presente trabalho, pois o mel utilizado possui peso molecular de 504,44 g mol⁻¹, enquanto que a sacarose comumente utilizada em sorvetes possui peso molecular de 342,30 g mol⁻¹.

Tabela 1 – Valores médios e desvio padrão de textura (N) e overrun (%) de sherbet adoçado com mel.

	Sherbet adoçado com mel
Textura (N)	$57,79 \pm 12,41$
Overrun (%)	$77,\!46 \pm 1,\!90$

A incorporação do ar é chamada de *overrun*, usualmente definido como o aumento do volume do sorvete obtido a partir de um volume inicial de calda, e é expressa em porcentagem de *overrun*. Este aumento de volume é composto principalmente do ar incorporado durante o processo de batimento/congelamento. A quantidade de ar incorporada depende da composição da calda e de propriedades do processamento, obtendo-se características adequadas de corpo, textura e palatabilidade necessárias ao sorvete (Leandro et al., 2006).

Comparando o dado de incorporação de ar do presente trabalho, com outros autores, nota-se que o *sherbet* adoçado com mel apresentou maior valor. Ramos (2016) obteve valores de *overrun* de 24,3% e 26,3% para os sorvetes com e sem lactose respectivamente, enquanto que Oliveira et al. (2005) ao analisar *sherbet* de mangaba encontraram valores variando de 25 a 50% de ar incorporado.

De acordo com Lamounier et al. (2015) o *overrun* diminui conforme há o aumento da adição sólidos, ocasionando a diminuição da água livre disponível nos sorvetes. Justificando desta forma a maior incorporação de ar no *sherbet* adoçado com mel, pois o mel possui naturalmente água em sua composição (máximo de 20%). Sendo um ponto importante para o sherbet adoçado com mel, pois o ar incorporado durante o batimento torna o produto leve, macio e saboroso (Madrid et al., 1996; Varnam e Sutherland, 1994; Amiot, 1991).

4. CONCLUSÃO

Pode-se concluir que a substituição da sacarose pelo mel como adoçante do sherbet resultou em um produto com maior dureza, no entanto o ar incorporado durante o batimento resultou em um produto leve e macio.

5. AGRADECIMENTOS

Os autores agradecem ao Intituto Federal Goiano — Campus Rio Verde por todo apoio necessário para o desenvolvimento da pesquisa, à FAPEG (Fundação de Amparo à Pesquisa do Estado de Goiás) pelo auxílio financeiro para o desenvolvimento do projeto, à CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) pela concessão da bolsa de estudos de Pós-doutorado à Lismaíra Gonçalves Caixeta Garcia e ao Latícinios PIRACANJUBA® pela doação do leite zero lactose utilizado na pesquisa.

5. REFERÊNCIAS BIBLIOGRÁFICAS

Aime, D. B., Arntfield, S. D., Malcolmson, L. J., Ryland, D. (2001). Textural analysis of fat reduced vanilla ice cream products. Food Research International, 34(2-3), 237-246.

Amiot, J. (1991). *Ciencia y tecnología de la leche*. Zaragoza: Acribia.

Brasil, Ministério da Saúde. (1999). Aprova o regulamento técnico referente a gelados comestíveis, preparados, pós para o preparo e bases para gelados comestíveis (Portaria n° 379, de 26 de abril de 1999). Diário Oficial da República Federativa do Brasil.

Clarke, C. (2004). The Science of ice cream. Cambridge: Royal Society of Chemistry.

delbrueckii UVF H2b20 em sorvete. Revista do Instituto de Laticínios Cândido Tostes, 64, 300-303.

Fellows, P. J. (2006). Tecnologia do processamento de alimentos: princípios e prática. Porto Alegre: Artmed.

Goff, D. (2010). *Ice cream manufacture*. Disponível em http://www.upguelph.ca/foodscience/dairy-science-and-technology/dairy-produtcts/ice-cream/ice-cream-manufacture.

Lamounier, M. L., Andrade, F. das C., Mendonça, C. D. de, Magalhães, M. L. (2015). Revista do Instituto de Laticínios Cândido Tostes, 70(2), 93-104.

Leandro, E., Paula, R., Carvalho, A., Brandrão, S., Moraes, C. (2006). Sobrevivência de Lactobacillus

Madrid, A., Cenzano, I., Vicente, J. M. (1996). Manual de indústrias dos alimentos. Sao Paulo: Varela.

Oliveira, A. L. D., Silva, M. G. F. D., Sobral, P. J. D. A., Oliveira, C. A. F. D., Habitante, A. M. Q. B. (2005). Propriedades físicas de misturas para sherbet de mangaba. Pesquisa Agropecuária Brasileira, 40(6), 581-586.

Ramos, A. F. (2016). Avaliação de aspectos físico-químicos, sensoriais e reológicos de sorvete gourmet elaborado com teor reduzido de lactose. (Dissertação de Mestrado). Universidade Federal de Juiz de Fora, Juiz de Fora

Soler, M. P.; Veiga, P. G. (2001). Sorvetes. Campinas: ITAL/CIAL.

Souza, V. R., Pereira, P. A. P., Gomes, U. J., Carneiro, J. D. S. (2011). Avaliação e definição do perfil de textura ideal de queijo *petit suisse. Revista do Instituto de Laticínios Cândido Tostes*, 66(382), 48-53.

Varnan, A. H., Sutherland, J. P. (1994). Leche y productos lacteos, tecnología química y microbiología. Zaragoza: Acribia.

